α-strongly convex and β-smooth

A function is α-strongly convex and β-smooth if for all 𝐱,𝐲\mathbf{x},\mathbf{y}: α2||𝐲𝐱||22[f(𝐲)f(𝐱)]f(𝐱)𝖳(𝐲𝐱)β2||𝐲𝐱||22\frac{\alpha}{2}||\mathbf{y}-\mathbf{x}||_2^2 \leq [f(\mathbf{y})-f(\mathbf{x})]-\nabla f(\mathbf{x})^\mathsf{T}(\mathbf{y}-\mathbf{x}) \leq \frac{\beta}{2}||\mathbf{y}-\mathbf{x}||_2^2 (multidimensional generalization)


For scalar functions, a twice-differentiable function ff is α-strongly convex and β-smooth if for all xx, αf(x)β\alpha \leq f''(x) \leq \beta


If f is β-smooth and α-strongly convex then at any point 𝐱\mathbf{x}, the Hessian 2f(𝐱)∇^2 f(\mathbf{x}) satisfies: α𝐈2f(𝐱)β𝐈\alpha \mathbf{I} \preceq ∇^2 f(\mathbf{x}) \preceq \beta \mathbf{I} where 𝐈\mathbf{I} is a d×dd \times d identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions.

Note the PSD relations

Equivalently for any 𝐳\mathbf{z},

#incomplete


condition number

κ=βα\kappa = \frac{\beta}{\alpha} is called the condition number of ff